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REPRESENTATION OF FUNCTIONS AS WALSH SERIES 
TO DIFFERENT BASES AND AN APPLICATION 

TO THE NUMERICAL INTEGRATION 
OF HIGH-DIMENSIONAL WALSH SERIES 

GERHARD LARCHER, WOLFGANG CH. SCHMID, AND REINHARD WOLF 

ABSTRACT. We will prove the following theorem on Walsh series, and we will 
derive from this theorem an effective and constructive method for the numerical 
integration of Walsh series by number-theoretic methods. Further, concrete 
computer calculations are given. 

Theorem. For base b > 2, dimension s > 1, and a > 1, c > 0 (b, s E 
N; c, al se R), let bEs (c) be the class of all functions f: [0, 1)s -+ C which 
are representable by absolutely convergent Walsh series to base b with Walsh 
coefficients W(h1, ..., hs) with the following property: IW(hj, ..., hs)l < 
c * (h1 *hs)- for all h1 .., hs, where h := max(l, Ihi) . We show that 

if f e 2Es(c), then f E 2hE7 -(c . 2hsa) for all h > 2, provided that 
a > 1 + Plh, where 

h-1i + 
k= log sin (+4 32{}) 

Ph = 
2h h * log2 

The "exponent" a - 1Ph is best possible for all h, and Ph is monotonically 
increasing with 

1 log sin 5,r 
fi lim Ph =- + 12 = 0.4499 .... h--oo 2 log 2 

1. INTRODUCTION 

In recent times, especially in the context of image processing and signal pro- 
cessing, it has become necessary to give good effective methods for the numer- 
ical integration of functions which are representable by Walsh series. A first 
number-theoretic approach to this problem, in some (implicit) sense, was al- 
ready given by Sobol [8, 9]. (He indeed was dealing with Haar functions.) But 
a first systematic investigation of number-theoretic methods for the numerical 
integration of Walsh series with effective results and, in some sense, best pos- 
sible error estimates-an investigation which only was possible on the basis of 
the theory of (t, m, s)-nets developed by Niederreiter-was worked out only 
quite recently in [3]. (See also [2].) We now give the basic concepts and the 
basic results of this theory. 
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Definition 1. Let b > 2 be an integer and w e2nilb. The Rademacher 
functions to base b are defined by 

q$b)(x)=wk for 
k 

<?x < b-,k=O,. b-l, 

and for n > 0 by 
(b)(X+ 1) =0(b)(X) = b) (bnx). 

Definition 2. The Walsh functions to base b are defined by 

wal4'(x) - 1 

and, if n = a,bnl + + ambnm with 0 < ai < b and n1 > n2> , by 

wal(b)(x) = Oa, (X) *,, fat (X), 

where q means Rademacher to base b . For dimension s > 2 and k1, .k. , k> > 
0, we define 

wal b) k(Xl, ...x , xs) = wal(b) (xI)... walb) (xs). 

The set W = {wal(b) k(X, .. , xs) ki > 0, i= 1,..., s} is an orthonormal 
and complete system of functions in L2 ([0, 1)5). 

Definition 3. For base b > 2, dimension s > I, and a > 1, c > 0 (b, s E 
N; c, a E R), let bEs(c) be the class of all functions f: [0, 1)s -5 C which 
are representable by absolutely convergent Walsh series 

00 

, W(hl, hs) * wal (b) h(XI, **,Xs) 

hi, ..., hs=o 

with Walsh coefficients W(h1, ... , hs) having the following property: 
~~~~~~c 

JW(hl,. , hs)l < -( h for all (hi,. , hs) 7? (0, . . ). jW(h1, ... , h (h C . h 

(Here, h := max(l, Jhl).) 
Then, for given N, we are asking for point sets Xl, ...,XN in [0, 1)s such 

that the integration error 

RN(f) := ~ |J fxdx - - E f(2&k) 

is small for all f E bEs(c). 
It turns out that point sets achieving this objective in a best possible way 

are provided by so-called (t, m, s)-nets to base b, and especially by digital 
(t, m, s)-nets to base b, which can be defined by the following chain of defi- 
nitions. 

Definition 4. For an integer b > 2, an elementary interval to base b is defined 
to be an interval of the form 

S 
a(i) a(i)+ 1 
bd' bdi 
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with integers di, a(i) > 0 and a(i) < bd for 1 < i -s_ 

Definition 5. Let b > 2 and 0 < t < m be integers. A (t, m, s)-net to base 
b is a set of bm points in [0, 1)s for which we have that in every elementary 
interval to base b of volume bt-m there are exactly bt points of the set. 

Such (t, m, s)-nets have excellent distribution properties if t is small (the 
optimal case of course is t = 0), as was pointed out in detail in [6]. 

One possibility of constructing such nets is the so-called digital method. That 
is: 

Definition 6. Let b > 2 be a given base. Let R {O, ..., b - 1} be an 
arbitrary ring with zero element 0. Let Ci = (c(i)), k, = 1,..., m, I= 
1, ..., s, be m x m matrices over R. In the following we identify every 
integer n, O < n < bm 1,n = amIbm-l + +ao, ai E {, ...,b - 1}, 
with the vector n:= (=m-, ..._ , do)T, and conversely. Then let 

=bm *n,..' bmin n)) E [0, 1)s. 

If this point set is a (t, m, s)-net to base b, then it will be called a digital 
(t, m, s)-net. 

Niederreiter [6] gives the following explicit examples of digital (0, m, s)-nets 
to any prime-power base b, provided that s < b + 1 . 
Construction method. Let Fb be the Galois field of order b. Then we define 
the matrices Ci = (cS()) over Fb, j = 1, ...,m, r = O, ..., m-1, i= 
1, ..., s, in the following way: Choose s - 1 pairwise different elements /Ji, 
i = 1,..., s-1,from Fb . Let 

c(i) = 0 for < i < s - 1, 2 < j < m, 0 < r < j - 1, 

c(' = (j r1> )* +1 for < i<s- 1, 1I <j<m,j- 1 <r<m- 1, 

jsr) r,m-j for I <j< m, 0<r< m- 1. 

Here, ,0 = 1 for all ,E EFb, and 3 is the Kronecker symbol. The point set 
corresponding to these matrices then always is a (0, m, s)-net to base b. Two 
easy examples: 

s = 2, b > 2: C C2 

This choice of the Ci provides the so-called Hammersley sequence to base b, 
which is well known in uniform distribution; 

I (O) (10) * * (O-) l 

(1) (2) (mi 

s = 3, b =2: C2 ( . .Ein F2 
0 
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with C1 as above and C3 equal to the second matrix from the first example 
gives a (0, m, 3)-net to base 2. 

If we use (t, m, s)-nets, and especially digital (t, m, s)-nets, for the inte- 
gration of Walsh series, then we get the following result: 

Theorem 1. (a) If x ... XN is a (t, m, s)-net to base b, then, with a positive 
constant K(s, a, c) depending only on s, a, and c, we have 

RN(f) < K(s, a, c) . bt(a- 1) . (log N)sI 

for all f bE (c). 
(b) If b is a prime, R the Galois field Fb, and xl ..., XN a digital 

(t, m, s)-net to base b defined over R, then, with a positive constant K(s, a, c) 
depending only on s, a, and c, we have 

RN(f)< K(s, a, c) * bta - ( Na) 

for all f E bEs(C)- 

For the proof of Theorem 1, see [3]. An attempt to prove an analog to part (b) 
of the theorem for prime-power case b causes technical problems, so that until 
now, this result is proven for b prime only. However, numerical investigations 
(see [7]) lead us to conjecture that this error estimate also holds for prime-power 
base. 

Part (b) of Theorem 1 is in some sense the best possible result that can be 
obtained in any case: For the optimal case of digital nets with t = 0, we have 

RN(f) < K(s, a, c) * (logN)s 

On the other hand, we have the following result: 

Theorem 2. For all b > 2, c > 0, a > 1, s E N there is a constant c' 
c'(c, a, s, b) > 0 such that: For all N and every point set xl, ...N, X in 

-a 
[0, l)s there is an f EbEs (c) with f(,Kk) = O for k= 1, ...,N and 

(x)dx > c'. (log N)s1 

For the proof of Theorem 2, again see [3]. 
So to make these theoretical results effective and applicable (and this is one 

aim of this paper), we have to ask: For given s, b, and m, how can we find 
digital (t, m, s)-nets to base b with t as small as possible, and how small can 
t be for given s, b, and m ? 

For most applications, the most important case is the case of base b = 2. 
Therefore, in the following we will concentrate on practical aspects for this 
case. As we have seen above, we have a concrete construction method for 
digital (0, m, s)-nets to base 2 for dimension s = 2 or 3. For dimension 
s > 4, however, it was shown by Niederreiter [6] that there cannot exist a 
(0, m, s)-net to base 2. 

It need not be emphasized that methods for numerical integration are of 
increasing interest the higher the dimension is they work for. That is: We 
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would need effective construction methods for (t, m, s)-nets to base 2 with 
small t for dimensions s at least 8 or 10. 

A special construction method for (t, m, s)-nets with t = O(s logs) for base 
2, independently of m, was given in [4]. However, it is not possible to give a 
constructive method for nets with t uniformly small, that is, independent of 
m, and of the dimension s. (See [5].) 

Another attempt in solving this practical problem is to provide tables of 
digital nets. Some intensive computer calculation was done in this direction in 
[1]. For example, there is given a table of (t, m, s)-nets to base 2 for s = 4 
and 2 < m < 20, and for 5 < s < 12 and 2 < m < 10, with values of t 
between 1 and 6. Of course, this table, for most practical purposes, still is too 
small. 

In this paper we have tried an alternative approach for managing the practical 
problems, which is described in the next section. 

2. THE METHOD AND THE RESULTS 

We only use (0, m, s)-nets to a base 2h (h E N; h > 2) for the integration 
of base-2 Walsh series. 

That is: We have to integrate a base-2 Walsh series of dimension s > 4. We 
choose h minimal such that 2h > s - 1. Then by Niederreiter's construction 
method we construct a digital (0, m, s)-net to base 2h and use this net for the 
numerical integration of the function. 

To test the quality of this procedure, we of course first have to provide a 
result on the integration of base-2 functions by base-2h digital nets. The basis 
for such a result is the following Theorem 3, which gives a relation between the 
Walsh coefficients of a function represented in different bases. 

Theorem 3. For h, se N, c >0 we have: 
(a) If fE 2E7 (c), then f E 2hEs (Ch( 2hSa), provided that a > 1 + flh. 

Here, 

Eh -2 log sin (4+ 2 {4' 21 k -1} 

fh 2h + h * log2 
and /3h is monotonically increasing with 

f := lim 1h = + 1o 2 = 0.4499 .... 
h --*oofl2 log 2 

(b) The "exponents" a - /3h in the above result are best possible. 

Remark. We have 62 = 0.25, fl3 = 0.2952..., fl = 0.3394..., f5 = 
0.3588.... 

From Theorems 1 and 3 the following result immediately follows, and the 
following conjecture is suggested. 

Theorem 4. If x1, ... , XN is a (O, m, s)-net to base 2h, then 

RN(f) < K(s, a, c . 2Sa) . (logNN)- 

for all f E2E(c) with a > I + h. 
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Conjecture. If x1, ... , XN is a digital (0, m, s)-net to base 2h, then 

RN(f)< K(s, a(, c . 2hsa) . (logN)-I 

for all f E 2Es (c) with a > l + fh 

(Here, K(s, a, c. 2hsa) means the same constant as in Theorem 1, with 
c * 2hsa replacing c.) So the integration error with this method is larger by a 
factor Nf/h at most. But on the other hand, the method provides a concrete 
effective device to integrate base-2 Walsh series in arbitrary dimension with 
arbitrarily large N and an integration error of at most (log N)s-i /Na4h-1, 

and most probably of at most (log N)s- /N-IN , which still is a very useful 
order if a is not too small. 

Concrete examples and calculations will be given in the last section of the 
paper. 

3. PROOF OF THE RESULTS 

We only have to prove Theorem 3. Let h E N be given and B = 2h. We 
write q and wal for Rademacher, resp. Walsh functions to base 2. Since for 
0 < i < h, qi is constant on intervals of the form [B, a?l ), it is obvious that 
for n > B and all j with 0 < j < h we have 

q$j (x) waln (x)dx =0, 

and therefore 
B-1 

qOj(x) = , A(j, n) - wal$?B)(x). 
n=O 

Here and in the following we sometimes make use of the following basic prin- 
ciple for Walsh series (see [3]): 

(*) For given base b > 2 and k, 1 E N0, let k ? I denote digital 

summation modulo b of k and I. Then wal b(x) Xwal(b)(x) = 

wal( (x). 

Therefore, for 0 < k < B, 

B-1 

walk (x) = E y(k, n) * wal B) (x), 

n=O 

and with s E N, 

B-1 

walk.BS(x) = walk(Bsx) = S y(k, n) * wal B) (Bsx) 
n=O 

B-1 B-1 

= E5y(k, n)* (qOB)(X))n = 5y(k, n) wal . (x). 
n=O n=O 

Here, 

y(k, n) = j walk (x)* (04B)(X))-n dx. 

Note that y(k, 0) = 0 whenever k :$ 0. 
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Let Vk := (walk(O), ..., walk(BI)), wn := ((w-n)0 **-, (w-n)B1)T, k = 
O, ... B -1, n =O, ., B- 1,with w =e 27tilB , and 

V(h) = . , W(h) := (WUO, .- B 

VB= I 

Then C(h) := (y(k, n))k,n=O,...,B-1 = B V(h) . W(h). Let 

B-1 B-1lgh 

Mh n= 
max E ly(k, n)l ly(k, no)l and / log2M 

nk,_-1-- k=0 .1g 

We now split the proof into several lemmas. 

Lemma 1. If g E 2E (C), then g e BEB (C * Ba), provided that a > 1 + hflh 
The exponent a - f,B is best possible. 

Proof. Let n = vo(n) + v1 (n)B + + vj(n)Bj, vi(n) E {O, ... , B - l} for 
i = , ..., j- 1, vj(n) E {1, ..., B - 1}. Then 

oo Bj+1-1 j 

g(x):=go+l Z gnI *lwalv,(n))Bs(x) 
j=O n=Bj s=O 

oo Bj+'-1 j B-1 

= gO1+0E E gn * 1I E y(VS(n) , m) * wal(B) s(x)) 
j=O n=Bi s=O m=O 

00 

- E hl,. wal(B)(x). 
1=0 

Since vj(n) $ 0, we have y2(vj(n), 0) = 0, and therefore by the principle (*), 

Bj+'-1 I B-1 \ BJ+ -I 

gn ( y(vs(n), m) * wal2(B) (x))= hZ h wal(B)(x). 
n=Bj s=0 m=0 1=Bj 

Let I= ujB + * * +Uo ui E {O, ..., B-1} for i = O, ...,j - l, uj E 
{1, ..., B- 1}. Then 

h* - wal(B) (x) - h -IJwalB (x) 

s=O 

Bj+'-1 I 

- z gfl.flY(vS(n),uS).wal(.BS)(x) 
n=Bi s=O 

- [z (gn * g jy(vs(n), us))1 ]wal( )(x), n=B j 3=0 

so that 

h, = Z (gn* y(vs(n), us)) 
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and 

Bi+' -1 j 

Ihl < c* > ?JJn ly(vs(n) us)l =:c El. 
n=Bj s=O 

If we consider the function g E 2E (c) with 

c IT= 07(vs(n), us) 
gn 

_ _ 

n O 
IT i=1 ly(vs (n) , us) 

then we have h1 = c * El. Furthermore, 

1 Bj+'-1 j 1 B+'-1 Ij 

B(j+')or Z E L ly(vs(n), us)l <E, < BEl * > 17 Iy(vs(n) , us). 
n=Bi s=O n=Bi s=O 

Because of y(O, uj) = 0, we have 

Bj+'-1 I B+l'-1 I 

1 IfIJy(vs(n), us)f = E flIy'(vs(n), us)I 
n=Bj s=O n=O s=O 

B-1 B-1 j IB-1 1\ 

E ... IY(Vs, us)l = E IY(V, Us)I) 
vO=O vj=O S=O s=O =O 

Therefore always 

El < j (Mh)j+' < BR*O_iE 
Bial/r l 

and, if I = no * (Bi+1 - 1)/(B - 1), 

El > B(+)t*(Mh)j+' > B'g ?_i 
B(j+')ci Bcl-flh cp -flh 

and the result follows. o 

Remark. From the proof above it follows that, if we set 

Bi+l- 1 1 

Ah SUP max I/+a-fl ZE + J I Y(vs(n), s , )), JBj<l<Bj+l n=_ c 
s=O 

then the result " g E 2E I(c) -g E BEI fl(c Ah) " is true and best possible, 
even in the constants. 

Lemma 2. If f E 2Es (c), then f E BE2 hl(C BS), provided that a> 1 + flh. 
The exponent a - /3^ is best possible. 
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Proof. That a - /3^ is best possible clearly follows from Lemma 1. We only 
have to consider the function g defined in the proof of Lemma 1 as a function 
which is constant in s - 1 variables. 

Now we use induction on s. The case s = 1 is settled by Lemma 1. Assum- 
ing the assertion true for dimension < s - 1, we get: Let f E 2E7(c), s a 2, 
and a > 1 + fl with 

00 

f(xi, ...,x5) := E f(k1, ..., k15) walk1 (xI) .. walk,(xs) 
k k, k=O 

=: E | E ~f(ki) (k2, ..., ks) walk2 (X2) ...walk, (xs) * walk, (XI) 

kj=0 \k2, ..., k5=O 

Then 

if(kl)(k2, k5)j < C 1 
- T (k2 TS5)' 

and by the induction hypothesis we have that the inner sum above is equa'l to 

00 

Z h (kl)(12, , s) * wal( )(X2)*.. wal( )(x5) 

with 

Ih(k )(12, MI, is)I B(sB ) ka C-- 1 
k? 7 2 jS)ak-fh 

Therefore (rearranging of the summands provides no problem since a > 1 +,B), 

00 

f(Xl, *-,Xs) = E wal(P)(X2) wal(P )(xs) 

j2, *., js=O 
00 

: h h(ki ) ( j,. , js) *-walk, (xI). 
k1 =0 

Again, using the induction hypothesis for the last sum, we get the result. Ol 

Lemma 3. For j with 0 < j < B, i = ihl2 h1 + + jo, let Jk 

(jk2k+ + jo)/2k+l . Then 

h-2 

Mh = (X)( max * sin ( + 2Jk 
<<Bk=O 

4 2 

Proof. Let i = eh-12h-1 + +eo and Vi := (Vi,O, . Vi,B- 1) be the ith row 
of V(h). By the definition of V(h) and by the definition of Walsh functions, 
we have (vi,o, ... , vi,2k-1_1) = (vi,2k-1, .. . , vi,2kl1) if and only if eh-k = 

0. If eh-k = 1 , then (vi,o, ..., Vi,2k-1L1) = -(vi,2k-1 , - **, Vi,2k-1) -(This 

follows since wali(2k-1/2h) = (-1)eh-k and wal-(O) = 1.) Therefore, with 
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gk =I1 - 2ek, we get 

2h * ly(i, n)I = Ivnw,j 
(W7-nI)OI 

(Vi,o. ( - 
, Vi,2h-1-1) ( ( 

- (WnI2h )) J 

/(W-n )O 

- *..=171j1+(wn)2k-)2h- 

+ 80 * (Vi ,O, *** 
Vi,2h-1-1) * (W n)2 . 

(W-n )2h-l_l1 

/(W -n )O 

= (Vi,O ,.. Vi, 2h-1-1 ) .(1+( 0 

(W-n )2h- 1_1 

h-i 

=h.fl 11 + (WTn)2 
k 

gh-(-k) 

k=O 

k=h* Org (2ffhk+l 
) 

where 

Trigk = { Cos 
if 

h-l-k= 1, 
sin ifh-lk=-lk 

Hence, 

Z ly(i, n)I = 11 (cos (27rln2hk+) + sin (27l2h n+l) ) 
i=O k=O 

Now t(x) := I cos(x)I + I sin(x)I is periodic with period 2 and t(X) = 

v'- sin( 4' + x) for 0 < x < I 
, so that the last expression is equal to 

hj=h-1j f Qrl+ { n}) 

k=O 

and the assertion of Lemma 3 immediately follows. E 

Lemma4. For i h- 2hl I + + jo, let Jk := (jk2k+ + jo)/2k+l and 

h-2 

Fh(j):= rJl sin ( + 2Jk)- 

k=O 

Then 
max Fh (j) = Fh (T(h)) 

where 
2h-3 + 2h-5 + ...+20 for h odd, 

T(h) 2h-2+2h-4+ +20 forh even. 

Proof. This is easily checked for h = 1, 2. For h > 3 we have FE(0) = 
- and F(2-2) = I/1/ . These certainly are not the only maxima 
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for h > 3 since, for example, Fh(2h-2 + 2h-3) obviously gives at least as 
large a value. Further, it is easily checked that Fh(k) = Fh(2h-1 - k) for 
k =, . .. , 2h-2 _1 . We proceed by induction on h. Let the assertion be true 
for Fk with 1 < k < h - 1. If h is odd, we consider j with 0 < j < 2h-2 

arbitrary but j #h T(h). Let T(h) := th-3th-2 ... to and i := jh-3jh-2 . jo be 
the representations to base 2, and let 1 be the maximal index such that jI :$ t1 . 

Case 1: 1 even. Then t, = 1 and jI = 0. Further, 

,1 1h1-2 7 h(j) 
= 

Hsi ( (2 + Jk) H i 2 (2 + Jk) rl, 
*1n2, 

Fh(T(h)) = J7Jsin (2 (2 + T(h)k)) *2J sin (21 (*2- 

k=O k=, 

We have 

HIl =Fl+2(T(l + 2)), 1 + 2 < h, 
rll = F1+2 (jl+1 I .. Mo , 

so that by the induction hypothesis, El1 < IF . It remains to show that 12 < I'2. 
Let T :=t ...to-j ...jo; then 0 < T< 21+21-2+ -*+20, and for k > ?+ 1 

we have 

sin ( + Jk sin ( + T(h)k 

Hence, 

H2 = sin (2 (2 + T(h)h2 - 2T-1)) 

(h-3)/2T 

* [Ij sin ( ( + T(h)2k 
_ 

k=(1+2)/2 

*sin (2 (2-+ T(h)2k-1 -2k 

and 

I`2 = sin (2 (2 + T(h)h-2 

sin (2 (2 + T(h)2k)) sin (2 (2 + T(h)2k1I)) 

Because of 0 < T(h)h-2 - T/2131 < T(h)h-2 < 2, we have 

sin (2 (2 + T(h)h-2 - 
2 <11)) < sin ( 2+ T(h)2 

so that it suffices to show that for all k = 1+2 h-3 we have 
2 '' 2 

sin (j (2 + T(h)2k- 22k+1)) sin ( (2 + T(h)2k-I - ) 

< sin ( () + T(h)2k)) sin ( ( + T(h)2k1)) . 
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We have T(h)2k = 2 + T(h)2k_1/2. Let 

(P := (Pk :- (T(h)2k-I- 
T 

) := lk := 
7 

T(h)2k-2) 

then we have to show 

sin ( + o) sin (i + 2() < sin (- +a) -sin (+2a). 

Here, 0 < ( < a < . Since f(x) := sin(' + x)* sin(' + 2x) is monotonically 
increasing on [0, f], the result in Case 1 follows. 

Case 2: 1 odd. Then t, = 0, ji = 1 (and / < h - 4). By splitting up Fh(j) 
and Fh(T(h)) in the same way as above, we again have 

I' =F1+2(T(l+2)) ?JIi, 

and it again remains to show that 12 < 11'2. 
Now let z := jl jo - t1 to; then 0 < z < 21 + 21-2+ + 2, and for 

k>l+1 wehave 

sin ( ( + Jk)) =sin( ( + T(h)k +2k1)) 

and hence 

(h- 3)/2T 

2= sin (2(- + T(h)2k+l + 22+2)) 
k=(l+ 1)/2 

. sin (2 G + T(h)2k + 22k+1)) 

and 

12 = H sin ((2+T(h)2k+l) * sin (2( + T(h)2k), 
k=(l+ 1)/2 

so that it suffices to show that for all k = 1+1 h-3 we have 2 ''2 whv 

sin (2 (2 + T(h)2k+l + 22k+2)) sin (2 (2 + T(h)2k + 22k+1)) 

< sin ( + T(h)2k+l)) * sin (2 ( + T(h)2k))- 

We have T(h)2k+l = T(h)2k/2. Now let ( := (Pk := '(T(h)2k + T/22k+l) and 
a :k := 7T(h)2k; then we have to show 

sin - + )p -sin (- + 2() < sin ( + a). sin + 2a). 

Here, 5 ?a < <4. Since f(x) := sin( + x) * sin( + 2x) is monotonically 
decreasing in [5', 4], the result for h odd follows. 
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If h is even, then we consider j with 2h-2 < j < 2h-1, j # T(h). If we 
define I as above, we again have / < h - 3, and we can argue quite analogously 
to the previous case. The result follows. n 

Finishing the proof of Theorem 3. We now have that /1h from Lemma 2 is 

_ ______ h - 1 hk 2logsin(' + * T(h)k) 
fllogMh =k=+ + 2 (h 

h * log2 2h+ h * log2 
f 4(h-l)/2. 

_ if h odd, 
4h/2_I if h even, 

and T(h)k = {T(h)/2k+l }, so that 

, h- 1 sin ( + 2k+1 Ah =2 + (4k0 + 4 {2 3(2k+1l -if h odd, 
+ h .log2 

h-1 k=- 4 232k+l if/i ve 
h ___ + - 01gi i {h2f vn 

2/i h/i.og2 

and therefore Ah' = Alh- 
That 13h is increasing follows directly from the fact that by construction C(h) 

is always a submatrix of C(h+l) and from the definition of /1h . Since k < h -2, 
and therefore k + 1 < 2 [h], and since {- * 21} = I * 2m mod 2, we have 

{ 4[h/2] f 2 for k even, 
_ _ _ 3 

3 .2k+| t I forkodd. 3 

Therefore, because of 0 < 1/(3 * 2k+1) < 1/3, 

J4[h2 - 1l 2_ 1 for k even, 
___________3 3*2k~+ l 

\ 3 *2k+1 I 1 for k odd, 

and because of sin(5,1 + `x) = sin(7,1 - ix), we have 

si 7( 7(f4[h/2] - 1 =sin t (1)k 
sin ( 4 + 2 *{ 3. 2k+i JJ 12 2 3. 2k+1 

From this, the fact that 

1 log sin 
liMflh=-+ 12 

h-+o 2 log 2 

quickly follows. This finishes the proof of Theorem 3 and consequently of 
Theorem 4. 

4. CONCRETE EXAMPLES AND CALCULATIONS 

For the construction of digital (O, m, s)-nets to base 2h we use the con- 
struction method of Niederreiter, cited in ? 1, which was developed in [6]. 

As testing functions we use the following class of functions. (These functions 
have several advantages compared with the testing functions used in [3] and [ 10]. 
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For example, variables cannot be separated, and almost all Walsh coefficients 
W (kl ..., k5) of these functions f are of order (k1 k,)-a if f E 2Er 
Further, their variation is not too small.) 

For the construction of the testing function, let g8: [0, 1) -> JR with 

J0 if x = 0, 
gg 1/2(k-1)fl if 1/2k < X < 1/2k-1I k = 1, 2,... 

(f> L3- 1 arbitrary). Then it is easy to check (we refrain from going into 
details regarding the properties of the testing function) that 

2 -2 f 2l+ - 2 00 2J+ 1 1 (2) 

28+1 - 1 2i8 = - 
=O k=2j 2(k+)(fl+) 

and therefore for G(xl, ..., xs) := gfl(xl)... g,(xs) we have 

G,8 
E 2Es 

(cl)) 
with 

cl(/B) 

:= 

(28. 

1 
-I ) 

In analogy to the above, for x = O.xIx2 ... and y = 0-Y1Y2... represented 
to base 2, we define x D y := O.x1 + y1x2 + Y2 .. ., where summation of the 
digits is modulo two. Then by the product rule for Walsh functions (see [3]): 
walk2 (xl & x2) = walk2 (x2 ) * walk2 (x2), and from the representation of g86, we 
get 

h7 (xl , . , xs) := (g8 (XI D * ** Xs))7 E 2ES (C2 (A, Y)) 

with c2(fl, y) = 2fly - (2flY+' - 2)/(2,8Y+1 - 1). Moreover, the Walsh coefficients 
hk1,...,k5 of hy are different from zero only if k, = = ks. If we take 

f6: [0, l)s - R to be 

f,x)= (x ... I xs) 
= G(xl, xs) - hs+(s-l)/I(xi , ..., xs) 

then f86 E 2E+ (c) with c = c () + c2(f,s+ 5l). We use these f6 as testing 
functions. We have 

[ 
f2()d -= ( - 2ss _ 1 

In Table 1 we show the integration error of our testing function for /1 = 2.0 
and for fi = 3.0 for bases 4 and 8 and dimensions 3 and 7. 

The exact values of the integral are: 

for ,=2.0 and s = 3: -0.3143895522984145... 

for ,B = 2.0 and s = 7: - 0.4801057095355622... 

for ,=3.0 and s = 3: -0.3484183964183964.... 
for ,=3.0 and s = 7: -0.4877258612133539.... 

The calculations were carried out on a Silicon Graphics Iris INDIGO with a 
MIPS R3000A RISC-Processor. 
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TABLE 1. Concrete computer calculations 

13 J b j s 1 N numerical integration integration error 

2.0 4 3 16 0.1173629611730576 4.3175251347147203 E-01 
2.0 4 3 64 -0.3178653717332622 3.4758194348477600 E-03 
2.0 4 3 256 -0.3145006634294988 1.1111113108430715 E-04 
2.0 4 3 1024 -0.3143905664620092 1.0141635947702454 E-06 
2.0 4 3 4096 -0.3143896212968685 6.8998454061386383 E-08 
2.0 4 3 16384 -0.3143895538144221 1.5160076527465094 E-09 
2.0 4 3 65536 -0.3143895523228047 2.4390267583385139 E-11 
2.0 4 3 262144 -0.3143895522990524 6.3787863879838369 E-13 
2.0 4 3 1048576 -0.3143895522984270 1.2490009027033011 E-14 
2.0 4 3 4194304 -0.3143895522984146 1.6653345369377348 E-16 
2.0 4 3 16777216 -0.3143895522984145 0.0000000000000000 E+A00 
2.0 8 7 64 0.0020300596961533 4.8213576923171553 E-01 
2.0 8 7 512 -0.4612248946569917 1.8880814878570518 E-02 
2.0 8 7 4096 -0.4808358634761971 7.3015394063491446 E-04 
2.0 8 7 32768 -0.4801073128868772 1.6033513149937839 E-06 
2.0 8 7 262144 -0.4801057174805712 7.9450089840449323 E-09 
2.0 8 7 2097152 -0.4801057095962357 6.0673466251159880 E-11 
2.0 8 7 16777216 -0.4801057095421429 6.5806804450119216 E-12 

3.0 4 3 16 0.0527399778075051 4.0115837422590150 E-01 
3.0 4 3 64 -0.3495940715074610 1.1756750890645762 E-03 
3.0 4 3 256 -0.3484276232265984 9.2268082019231201 E-06 
3.0 4 3 1024 -0.3484184268146535 3.0396257066911403 E-08 
3.0 4 3 4096 -0.3484183967716397 3.5324321245866486 E-10 
3.0 4 3 16384 -0.3484183964203300 1.9335089085359414 E-12 
3.0 4 3 65536 -0.3484183964184048 8.3266726846886741 E-15 
3.0 4 3 262144 -0.3484183964183965 5.5511151231257827 E-17 
3.0 4 1 3 1048576 -0.3484183964183964 0.0000000000000000 E+00 
3.0 4 3 4194304 -0.3484183964183964 0.0000000000000000 E+00 
3.0 4 3 16777216 -0.3484183964183964 0.0000000000000000 E+00 

3.0 8 7 64 0.0001804840649129 4.8790634527826676 E-01 
3.0 8 7 512 -0.4661444031680542 2.1581458045299706 E-02 
3.0 8 7 4096 -0.4881680796822815 4.4221846892761318 E-04 
3.0 8 7 32768 -0.4877259237250645 6.2511710585688718 E-08 
3.0 8 7 262144 -0.4877258614504577 2.3710378105334939 E-10 
3.0 8 7 2097152 -0.4877258612135547 2.0078383400345956 E-13 
3.0 8 7 16777216 -0.4877258612133638 9.9364960703951510 E-15 
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